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Abstract: Focusing attention on a target creates a center-surround inhibition such that distractors
located close to the target do not capture attention. Recent research showed that a distractor can break
through this surround inhibition when associated with reward. However, the brain basis for this
reward-based attention is unclear. In this fMRI study, we presented a distractor associated with high
or low reward at different distances from the target. Behaviorally the low-reward distractor did not
capture attention and thus did not cause interference, whereas the high-reward distractor captured
attention only when located near the target. Neural activity in extrastriate cortex mirrored the behav-
ioral pattern. A comparison between the high-reward and the low-reward distractors presented near
the target (i.e., reward-based attention) and a comparison between the high-reward distractors located
near and far from the target (i.e., spatial attention) revealed a common frontoparietal network, includ-
ing inferior frontal gyrus and inferior parietal sulcus as well as the visual cortex. Reward-based atten-
tion specifically activated the anterior insula (AI). Dynamic causal modelling showed that
reward modulated the connectivity from AI to the frontoparietal network but not the connectivity
from the frontoparietal network to the visual cortex. Across participants, the reward-based attentional
effect could be predicted both by the activity in AI and by the changes of spontaneous functional
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1000 ms interval of blank screen, the feedback frame was
presented and remained on the screen for 1000 ms. The



practice trials in which the monetary feedback was
replaced by response feedback (correct vs. incorrect) were
provided prior to each of the two phases.

For the fMRI experiment, we included a localizer task in
a separate scanning session after the test phase to identify
each participant’s task-relevant visual areas. Seven circles
with line segment inside were presented below the fixation
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In the first day, the scanning consisted of two resting-
state sessions and a task session of the learning phase. The
two separate runs of resting-state data, which contained
200 EPI volumes each, were acquired 3 min before (pre-
learning resting-state data) and 3 min after (post-learning
resting-state data) the learning phase, respectively. Sponta-
neous brain activity recorded in resting-state fMRI has
been demonstrated to be an effective predicator of atten-
tional performances [Carter et al., 2010; Shulman et al.,
2009]. In this study, the resting-state sessions were used to
explore whether the learning-induced changes of sponta-
neous brain activity could predict the attentional effect in
the later test phase. During the resting-state scanning, par-
ticipants were asked to close their eyes and keep still, and
not to think about anything systematically or fall asleep
for 7 min. In the second day, the scanning consisted of a
session of the test phase with the main task and a session
of the localizer task.

Task fMRI data

Data for the main task in the test phase were prepro-
cessed with Statistical Parametric Mapping software SPM8
(Wellcome Trust Department of Cognitive Neurology,
London, UK). For each run, the first five volumes were
discarded to allow for T1 equilibration effects. Preprocess-
ing was done with SPM8 default settings. Images from
each run were slice time corrected and motion corrected.
Different brain tissues (gray matter, white matter, and cer-
ebrospinal signals) were segmented following the standard
procedures implemented in SPM8 and were transformed
into standard MNI space and resampled to 3 3 3 3

3 mm3 isotropic voxel. The data were then smoothed with
a Gaussian kernel of 6 mm full-width half-maximum
(FWHM) to accommodate inter-subject anatomical
variability.

Resting-state fMRI data

Similar preprocessing procedures were carried out for
the resting-state data in the learning phase using SPM8
and Data Processing Assistant for Resting-State fMRI
(DPARSF) [Yan and Zang, 2010]. For each of the two ses-
sions, the first five volumes were discarded to allow for T1
equilibration effects. The remaining images were then slice
time corrected, motion corrected, and spatially normalized
into standard MNI space and resampled to 3 3 3 3

3 mm3 isotropic voxel. After a linear trend of the time
courses was removed, the band-pass filter (0.01–0.1 Hz)
was applied to remove low-frequency drifts and high-
frequency noise. White matter and cerebrospinal signal
were extracted using SPM’s priori masks implemented in
DPARSF. The head motion parameters, mean global sig-
nal, white matter signal, and cerebrospinal fluid signal
were regressed out.

Statistical Analysis of Behavioral Data

For each experimental condition in the test phrase, omis-
sions, incorrect responses, and trials with RTs 6 3 SDs
beyond the mean RT for all the correct trials were first
excluded. Mean RT of the remaining trials (95.1% of all
the trials in the behavioral experiment and 90.0% in the
fMRI experiment) in each condition was then computed.
The error rate in each condition was calculated as the pro-
portion of the number of omissions (including the trials in
which RT was higher than 800 ms) and incorrect trials
against the total number of trials in the condition (Table I).

We used a 5 0.05 as the threshold for statistical signifi-



was included for each experimental condition. The six
head movement parameters derived from the realignment
procedure were also included. The 6 first-level individual
contrast images corresponding to the six conditions were
fed to a 2 3 3 within-subject ANOVA at the second group
level by employing a random-effects model (i.e., the flexi-
ble factorial design in SPM8 including an additional factor
modeling the subject means). In the modeling of variance

components, we allowed for violations of sphericity by
modelling nonindependence across parameter estimates
from the same participant and allowed for unequal varian-
ces between conditions and between participants using the
standard implementation in SPM8. We defined two con-
trasts: “H1>L1” and “H1>Mean (H2 1 H3).” The former
contrast reflected the neural correlates of reward-based
attentional capture and the latter contrast revealed the
neural correlates of stimulus-driven attentional capture. To
further investigate the brain-behavior correlation, a
planned t contrast “H1>L1” was computed with the
behavioral interference effect (i.e., RTs at H1 minus RTs at
L1) as covariate.

The AFNI program AlphaSim was used to determine
our significance criterion. The smoothness was estimated
using 6 mm 3dFWHM. Areas of activation were identified
as significant only if they passed the threshold of P< 0.005
family wise (FWE)-corrected at the cluster level, which
required 35 contiguous voxels, each voxel significant at
P< 0.005 uncorrected (unless otherwise stated) [cf., Lieber-
man and Cunningham, 2009].

Region of interest (ROI) analysis

Although reward effects have recently been observed over
the entire visual cortex [Arsenault et al., 2013], models of vis-
ual attention indicates that surround inhibition is formed to
suppress the competing neural representations of the dis-
tracting objects mainly in the extrastriate cortex [Desimone
and Duncan, 1995; Luck et al., 1997]. Evidence from magne-
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Dynamic causal modeling

Different models of functional architecture and effective
connectivity were compared using DCM10 implemented
in SPM8. Here we used bilinear DCM, which consists of
three different sets of parameters [Friston et al., 2003]: (1)
the “intrinsic” connectivity represents the latent connectiv-
ity between brain regions irrespective of experimental con-
ditions; (2) the “modulatory” connectivity represents the
influence of experimental conditions on the intrinsic con-
nectivity; and (3) “input” represents the driving influence
on brain regions by the experimental conditions. We
extracted activation time courses (eigenvariate) from the
left AI, the left inferior frontal gyrus (IFG), the left IPS and
the left lateral occipital cortex (LOC) in each participant
from a 3 mm sphere centered on the group peak coordi-
nates revealed by the contrast “H1>L1” (see “Results”).
The connectivity between IFG/IPS and the visual cortex
(LOC in this study) was constructed based on previous
models of the stimulus-driven attentional network [Vossel
et al., 2012]. The intrinsic connectivity between AI and
IFG/IPS was also specified because of AI’s involvement in
reward-based attention and its correlation with the behav-
ioral interference effect (see “Results”). Given the impor-
tant role of AI in representing stimulus salience [Uddin,
2015], we hypothesized that the reward-based salience is
represented in AI and then projected to the frontoparietal
network (IFG and IPS), which in turn modulates the neu-
ral activity in LOC. Based on this hypothesis, we con-
structed 8 model families characterized by three
independent factors: the presence or absence of the intrin-
sic connectivity from LOC to AI, the direction (i.e., bilat-
eral or unilateral) of intrinsic connectivity between AI and
the frontoparietal network, and the direction (i.e., bilateral
or unilateral) of intrinsic connectivity between the fronto-
parietal network and LOC (Fig. 4A). AI received the sali-
ence input (the reward-based salience, H1 vs. L1) in all the
model families, whereas LOC received the visual input in
the model families in which it had influence on other
areas. Each model family contained nine single models
that share the same driving input and intrinsic connectiv-

ities, but differed in the structure of the modulatory con-
nectivity exerted by reward. Table III summarized the
structure of the modulatory connectivity in the nine mod-
els. To test our hypothesis concerning reward-based atten-
tion, only H1 and L1 were included in the modeling. It
should be noted that for families containing bilateral
intrinsic connectivity, the H1 and L1 conditions were
specified to modulate on both directions.

These models and model families were then compared
using the Bayesian Model Selection (BMS), which uses a
Bayesian framework to compute the “model evidence” of
each model, representing the trade-off between model sim-
plicity and model fitness [Penny et al., 2004]. Here, BMS
was implemented using random-effect analysis (i.e.,
assuming that the model structure may vary across partici-
pants) that is robust to the presence of outliers [Stephan
et al., 2009]. Based on the estimated model evidence for
each model, random effect BMS calculates the exceedance
probability, that is, the probability of each model being
more likely than any other model. When comparing model
families, all models within a family were averaged using
Bayesian Model Averaging, and the exceedance probabil-
ities were calculated for each model family [Penny et al.,
2010]. Model parameters were estimated based on the
averaging of the winning family and were tested with
one-sample t tests.

Figure 3.

Results of the whole brain analysis for the test phase. A: Blue: the

activations revealed by the contrast “H1>Mean (H2 1 H3)”. Red:

the activations revealed by the contrast “H1> L1.” Purple: the

common activated regions of the two networks. Green: the brain

activations revealed by the contrast “H1> L1” exclusively masked

by the contrast “H1>Mean (H2 1 H3)”. Statistical parametric map

was shown at the threshold of P< 0.005 FWE-corrected at cluster

level, P< 0.005 uncorrected at voxel level (H1: high-reward distrac-

tor, location 1; H2: high-reward distractor, location 2; H3: high-

reward distractor, location 3; L1: low-reward distractor, location 1).

B: AI was activated by the contrast “H1> L1” when the RT differ-

ence between H1 and L1 conditions were included as covariates

(middle panel). Parameter estimates were extracted from the two

clusters. Scatter plots (with best-fitting regression lines) illustrates

the difference of the parameter estimates between H1 and L1 con-

ditions as a function of the RT difference (left and right panels). In

the right panel, the correlation was still significant after the outlier

(the bottom left dot) is excluded from the data (R2 5 0.59). Thus,

we keep all the data points in the plot. Note that the bottom left

dot in the right panel was identified as the only outlier because the

activity strength (the value of parameter estimates) of this dot in

the right AI was beyond 23SD of the group mean. No outlier was

found in the left panel.

TABLE III. The structures of the modulatory connectiv-

ity in DCM

Models 1 2 3 4 5 6 7 8 9

AI – IFG 1 1 0 0 0 0 1 1 0
AI – IPS 1 1 0 1 1 0 0 0 0
IFG - LOC 1 0 1 0 0 0 1 0 1
IPS - LOC 1 0 1 1 0 1 0 0 0

Notes: AI: anteriobr insula; IFG: inferior frontal gyrus; IPS: intra-
parietal sulcus; LOC: lateral occipital cortex; 1: presence, 0:
absence.
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Resting-state analysis

According to our hypothesis, the salience of the reward-
associated stimulus was increased after learning. However,
given the lack of behavioral differences between high- and
low-reward targets in the learning phase, it was not clear
when the reward-based salience was acquired. To over-
come this deficit, we took advantage of the resting-state
data and examined whether the functional connectivity
(FC) in the post-learning session could predict partici-
pants’ interference effect in the test phase. A recent study
suggested that the VS, a subcortical area that represents
reward value [Sescousse et al., 2010], interacted with the
AI in directing attention to reward-related stimulus [Roth-
kirch et al., 2014]. We hence expected that the behavioral
interference effect could be predicted by FC between VS
and AI. The FC analysis was carried out using the
Resting-State fMRI Data Analysis Toolkit (REST; http://
www.restfmri.net/) [Song et al., 2011]. The coordinates of
the bilateral AI were based on the results of whole-brain
analysis, and the coordinates of the bilateral VS (left:
x 5 212, y 5 9, z 5 29; right: x 5 9, y 5 6, z 5 29) were
based on a previous study of reward processing [Ses-
cousse et al., 2010]. We created spherical seeds centered on
the coordinates of the ROIs with a radius of 6 mm. To pro-
duce a participant-level FC map, we computed the mean
time series across all voxels in these areas and performed
correlation analysis between the AI and the VS for each
participant. These FC maps were then converted to z-FC
maps by conducting Fisher z score transformations. These
analyses were performed for both the pre-learning and the
post-learning data. Next, we performed correlation analy-
sis between the Fisher z scores and participants’ interfer-
ence effect for both the pre-learning and the post-learning
sessions. Partial correlation was also performed after the
Fisher z scores in the pre-learning session had been con-
trolled. We further calculated the change of FC after learn-
ing by subtracting the Fisher z scores in the pre-learning
session from the scores in the post-learning session and
examined correlation between the change of FC and the
behavioral interference effect.

RESULTS

Behavioral Data

Given that neither error rates nor RTs in the learning
phase showed significant differences between experimen-
tal conditions, the following report focuses on RTs and
error rates in the test phase (Table I).

For the behavioral experiment, repeated-measures analy-
sis of variance (ANOVA) on RTs showed a main effect of
location, F (2, 26) 5 11.20, P< 0.001, h2

p 5 0.463, and an
interaction between distractor type and location, F (2,
26) 5 4.63, P< 0.05, h2

p5 0.263, but no main effect of dis-
tractor type, F< 1. Separate ANOVAs on the location effect
were carried out for the low-reward and high-reward dis-

tractors, respectively. For the low-reward distractor, RTs at
the three locations (L1: 484 ms, L2: 483 ms, L3: 480 ms)
did not differ from each other, F< 1. For the high-reward
distractor, there was a significant location effect, F (2,
26) 5 11.74, P< 0.001, h2

p5 0.474. Further pairwise compari-
sons with Bonferroni correction showed that RTs at H1
(494 ms) was longer than RTs at H2 (478 ms) and H3 (474
ms), with no difference between the latter two: H1 vs. H2,
P< 0.05, 95% confidence interval (CI) [3.5, 28.8]; H1 vs.
H3, P< 0.01, 95% CI [6.9, 33.5]; H2 vs. H3, P> 0.1, 95% CI
[26.1, 14.2]. The interaction between distractor type and
location was also examined from the other direction.
Paired t tests were carried out for the reward effects at
each of the three locations. The results showed that RTs at
H1 was longer than RTs at L1, t (13) 5 2.14, P 5 0.052, 95%
CI [20.1, 20.4], whereas RTs at H2 did not differed from
RTs at L2, t (13) 5 1.16, P> 0.1, 95% CI [213.7, 4.2], and
RTs at H3 was shorter than RTs at L3, t (13) 5 2.52,
P< 0.05, 95% CI [211.6, 0.9] (Fig. 1C, left panel). When the
H3 and L3 conditions were excluded, the 2 (Reward: high
vs. low) 3
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no difference between H2 and H3, P> 0.1, 95% CI [27.7,
10.5] (Fig. 1C, right panel). For the reward type, there was
only a significant difference between H1 and L1, t
(16) 5 2.89, P< 0.05, 95% CI [1.8, 11.7], but not between H2
and L2 or between H3 and L3, both P> 0.1, 95% CI [29.1,
4.4] and [25.8, 5.4]. ANOVA on error rates did not show
any significant effects, all P> 0.1.

We noticed that the effects (i.e., H1>H2, H1>H3) in
terms of RTs, as well as in terms of neural activity in
the visual cortex (shown in the imaging data below),
were not as strong as in the behavioral experiment,
although qualitatively the patterns in the two experi-
ments were similar. This reduction in the effect size
may be due to scanner noise, vibration and unfamiliar
body gestures in the scanner [cf. Anderson et al., 2014].
We believe that the reduction in RT effect sizes have
not significantly undermined our main arguments, for
these arguments and most of our analyses of neural

data were primarily based on the effects between H1
and L1, which were robust in both the behavioral and
the fMRI experiments.

Imaging Data

Reward-based attentional capture in the

visual cortex

We first examined whether the effect of reward-based
attentional capture in the test phase was manifested in vis-
ual cortex. Parameters estimates of the six experimental
conditions were extracted from the left and the right
extrastriate cortex identified in our localizer task. The 2
(Hemisphere: left vs. right) 3 2 (Reward: high vs. low) 3

3 (Location: 1, 2 vs. 3) ANOVA on the parameter estimates
revealed only a significant interaction between reward and
location, F (2, 32) 5 6.20, P< 0.01, h2

p5 0.279. For the low-

Figure 5.

The DCM analysis for AI and VS. A: The structure of 12 models with different intrinsic connec-

tivities and modulatory connectivities. B: The exceedance probabilities of the 12 models in the

left (left panel) and the right (right panel) hemisphere. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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reward distractor, the ANOVA on the location effect
showed that the neural activity (collapsed across the left
and the right extrastriate cortex) at L1, L2, and L3 did not
differ from each other, F (2, 32) 5 1.99, p> 0.1, but there
was a linear trend, F (1, 16) 5 4.32, P 5 0.054, h2

p5 0.213,
with the neural activity increasing from L1 to L2 and to
L3. For the high-reward distractor, the location effect was



and AI. The VS was defined in the same way as in the resting
state. Nine Models with different intrinsic connectivities and
modulatory connectivities were constructed and compared,
but no model won in the BMS (Fig. 5). This indicated that the
reward system may not be extensively involved in reward-
based attentional capture in the test phase.

Learning-induced changes in spontaneous

brain connectivity

For the pre-learning session, the FC between AI and VS
did not correlate with the behavioral interference effect in
the test phase, left hemisphere: Pearson r 5 20.29, P> 0.1,
right hemisphere: r 5 20.00, P> 0.1 (Fig. 6A). In contrast,
for the postlearning session, there were strong positive
correlations between FC and the behavioral interference
effect, left hemisphere: r 5 0.63, P< 0.01, right hemisphere:
r 5 0.53, P< 0.05 (Fig. 6B). After FC in the pre-learning ses-
sion had been controlled, the partial correlation analysis
still showed positive correlations between the behavioral
interference effect and FC in the post-learning session, left
hemisphere: r 5 0.62, P< 0.05, right hemisphere: r 5 0.64,
P< 0.01. Moreover, there were also significant positive cor-
relations between the change of FC after learning and the
behavioral interference effect, left hemisphere: r 5 0.61,
P< 0.01, right hemisphere: r 5 0.57, P< 0.05 (Fig. 6C).
These results suggested that the reward-based attentional
capture in the test phase could be predicted by the sponta-
neous FC between AI and VS after learning.

DISCUSSION

In this fMRI study, we investigated the neural mecha-
nism of reward-based attention by distinguishing reward-
and attention-related signals. We found that IFG, IPS, and
the visual cortex are commonly activated in reward-based
and stimulus-driven attention, whereas AI was only acti-
vated in reward-based attention. Reward enhanced the
effective connectivity from the salience network (e.g., AI)
to the attention network (e.g., IFG/IPS), but not the con-
nectivity from IFG/IPS to the visual cortex. Moreover, the
reward-based attentional effect could be predicted both by



reward distractor interfered with the target processing
when it was located adjacent to the target (0.98) but did
not cause interference when it was located further away
from the target (2.1 – 4.58). The low-reward distractor in
far distances failed to cause interference as a result of the
surround inhibition, which emerged around 1.548 from the
target [Mounts, 2000b]. In contrast, the high-reward dis-
tractor caused interference in both near (0.98) and far loca-
tions (2.18). However, this interaction between reward and
location occurred only when attention was initially
focused on the target, for example, when the location of
the target was highly predictable, but disappeared when
there was no initial attention on the target, for example,
when the location of the target was unpredictable [Wang
et al., 2014]. Given that the initial attention on the target is
indispensable for the formation of surround inhibition
[Cutzu and Tsotsos, 2003], the interference effect induced
by the high-reward distractor at 2.18 from the target was
attributed to a “breakthrough” of the surround inhibition
rather than a simple extended interference effect [Wang
et al., 2014].

In a similar vein, here we increased the distance (� 1.68)
between the target and the distractor to ensure that the
reward-associated distractor fell into this inhibitory region.
Results in both the behavioral experiment and the fMRI
experiment showed that low-reward distractors induced com-
parable RTs when they were located in this inhibitory region,
whereas high-reward distractor induced increased RTs at H1
than at H2 and H3. Moreover, when data from the two experi-
ments were collapsed, Bonferroni corrected comparisons
showed that RTs at H1 was longer than RTs in the other condi-
tions (H2, H3, L1, L2, L3), all P< 0.05, whereas RTs in the
other conditions did not differ from each other, all P> 0.1
(except for a marginal significance, P 5 0.08, when comparing
RTs at H3 and L1). These results are consistent with our previ-
ous findings [Wang et al., 2014], indicating that only the high-
reward distractor near the target (H1) captured attention and
interfered with target processing. At the neural level, the activ-
ity in the extrastriate cortex showed a similar pattern, provid-
ing new evidence for the argument that reward could break
through the center-surround inhibition [Wang et al., 2014]. In
a broader sense, this finding is also in line with the idea that
the modulatory effects on visual cortex of top-down attention
and the value of stimuli may engage an overlapping neuronal
selection mechanism [Maunsell, 2004; Stanisor et al., 2013].

In this study, despite that the RTs at different locations
were comparable for the low-reward distractors, neural activ-
ity in the early visual cortex showed a linear increase with
increasing distance from the target, indicating a recovery
from surround inhibition. This recovery effect was also
reported in previous studies on surround inhibition [Boehler
et al., 2009; Hopf et al., 2006]. According to these studies, the
surround inhibition manifests near the attentional focus and
attenuates with the increasing distance from the attentional
focus. For example, Hopf et al. [2006; 2009] showed that only
the stimulus adjacent to the attended target (1.358 in visual

angle) was suppressed in the early visual cortex and the
processing of stimulus in the distant locations (�2.158) was
recovered, even though RTs did not differ between locations.
However, in contrast to a robust recovery in Hopf et al.
[2006; 2009], the recovery of the surround inhibition for the
low distractor in the current study was relatively weak (only
a linear trend from 1.68 to 48). This discrepancy could be
attributed to the difference in stimulus arrays. Distractors
were located in a single quadrant of the visual space in previ-
ous studies [Boehler et al., 2009; Hopf et al., 2006], but were
located in both hemispheres in this study. Given that
between-hemisphere distraction is more easily to inhibit than
within-hemisphere distraction [Alvarez and Cavanagh, 2005;
Wei et al., 2013], the inhibitory region across hemispheres
might be larger than the region within a hemisphere.

It should be noted that the recovery from surround inhi-
bition in the early visual cortex was observed only for the
low-reward but not for high-reward distractor. While neu-
ral representation for the low-reward distractor increased
linearly from near to far locations, neural representation
for the high-reward distractor did not show this pattern
and even decreased from H2 to H3. This asymmetry,
together with the shorter RTs at H3 relative to L3 in the
behavioral experiment, may indicate that another neural
and psychological process was taking effect for the high-
reward distractor, that is, the active suppression of high
versus low salient distractor [Geng, 2014]. The active sup-
pression functions to prevent attentional allocation to task-
irrelevant stimulus, especially when this stimulus is char-
acterized with high salience [Geng, 2014; Sawaki et al.,
2012]. In this study, because the target location was fixed
and a singleton distractor was present in every trial, the
active suppression mechanism was triggered to suppress
the distractor; this suppression could be more powerful
for the distractor with high reward-based salience com-
pared with the distractor with low reward-based salience.
The electrophysiological index of this active suppression
was observed when the reward-associated distractor was
rapidly rejected, demonstrating the active suppression of
the reward-associated distractor [Qi et al., 2013; Sawaki
et al., 2015]. Given that the strength of this active suppres-
sion is determined by the representational distance
between the target and the distractor [Geng, 2014], the dis-
tractor located far from the target (H3, H2) is more effec-
tively suppressed than the distractor near the target (H1).
In this way, although the distractor at H1 “broke through”
the surround inhibition, the distractors at H2 and H3 suf-
fered from active suppression and did not receive
adequate representation in the extrastriate cortex.

AI As the Source of Reward-based Salience in

No-Reward Context

Previous studies did not draw consistent conclusions
regarding the neural basis of reward-based attention. In an
event-related potential study, Hickey et al. [2010] showed
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that the effect of attentional orienting to reward-associated
stimulus correlated with the amplitude of medial frontal
negativity (MFN) that could be localized at the anterior cin-
gulate cortex (ACC). The activity in ACC also correlated
with the attentional orienting effect, leading to the argument
that reward increases salience by the mediation of ACC.



this attention is controlled by the interaction between the
dorsal and ventral networks [Vossel et al., 2012]. Second,
although TPJ is part of the ventral network, it is not
always activated in studies investigating stimulus-driven
attention. For example, Kincade et al. [2005] found that
TPJ did not exhibit greater response to salient task-
irrelevant color singleton than to other stimuli. The
authors thus claimed that TPJ is involved only in involun-
tary shift to behaviorally relevant stimuli. A related argu-
ment was that a filter determines the input to TPJ and
whether a distractor in visual search could pass through
this filter depends on whether it meets the definition of
the target [Shulman et al., 2003]. It is possible that the
task-irrelevant distractor in this study could not pass
through this filter and thus could not activate TPJ.

One might also argue that the attentional network
revealed through the distance effect [H1 vs. Mean
(H2 1 H3)] was not exclusively responsible for stimulus-
driven attention since the stimuli at the three locations
were all reward-related and reward may have differential
impacts upon the processing of the stimuli at different
locations. Although we could not completely rule out this
possibility, we believe that the frontoparietal network
revealed in the contrast subserved at least the attentional
orienting to the reward-associated distractor. First, this
network accords well with the stimulus-driven network
revealed in previous studies with stimuli presented in a
no-reward context [Vossel et al., 2012]. Second, according
to our DCM, the effective connectivity from this network
to the visual cortex was not mediated by reward, exclud-
ing a role of this network in representing reward informa-
tion. Last, the involvement of AI in the reward-based
effect but not in the distance effect additionally confirmed
the functional dissociation between the frontoparietal net-
work and AI.

CONCLUSION

Our results revealed distinct roles of AI and the
stimulus-driven network in reward-based attention. Asso-
ciating rewarding information to a stimulus increases the
salience of that stimulus and this reward-based salience is
represented in AI, which projects this information onto the
stimulus-driven attentional network and enables the
reward-associated distractor to break through the center-
surround inhibition in the visual cortex.
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